

University of Al-Qadisiyah

College of Dentistry

Stage:1th year

2022-2023

MEDICAL CHEMISTRY

Lecturer 1

Acid, Base, and Salt

Introduction and General Concepts

Dr. Salam Hussein Alwan

1. Acids and Bases

1.1. Acids

An acid is a substance that donates hydrogen ions (H⁺) when dissolved in water. For example, hydrochloric acid is a substance acid HCl in its aqueous solution (aq) dissociates as:

HCl (aq) \longrightarrow H⁺(aq) + Cl⁻(aq)

Some examples of acids are:

(i) Hydrochloric acid (HCl) in gastric juice

(ii) Carbonic acid (H_2CO_3) in soft drinks

(iii) Ascorbic acid (vitamin C) in lemon and many fruits

1.2. Bases

A base is a substance that donates hydroxide ions (OH⁻) when dissolved in water. For example, sodium hydroxide NaOH (aq) in its aqueous solutions dissociates as:

NaOH (aq) \rightarrow Na⁺(aq) + OH⁻(aq)

The term 'alkali' is often used for water-soluble bases.

Some examples of bases are:

(i) Sodium hydroxide (NaOH) or caustic soda used in washing soaps

(ii) Potassium hydroxide (KOH) or potash used in bathing soaps

(iii) Ammonium hydroxide (NH₄OH) used in hair dyes

1.3 Indicators

There are many substances that show one colour in an acidic medium and another colour in a basic medium. Such substances are called **acid-base indicators**.

Litmus is a natural dye found in certain lichens. It was the earliest indicator to be used. It shows red colour in acidic solutions and blue colour in basic solutions. Phenolphthalein and methyl orange are some other indicators. The colours of these indicators in acidic, neutral and basic solutions are given below in table 1

Table 1 Colours of some indicators in acidic and basic solutions

Indicator	Co	lour in acidic solutions	Colour in neutral solutions		Colour in basic solutions	
Litmus		red		purple		blue
Phenolphthalein		colourless		colourless		pink
Methyl orange		red		orange		yellow

2. Properties of acids and bases

Properties of Acids

The following are the characteristic properties of acids:

1. Taste

You must have noticed that some of the food items we eat have sour taste. The sour taste of many unripe fruits, lemon, vinegar and sour milk is caused by the acids present in them. Hence, we can say that acids have a sour taste. This is particularly true of dilute acids (see table 2).

Table 2 Acids present in some common substances

Substance	Acid present
1. Lemon juice	Citric acid and ascorbic acid (vitamin C)
2. Vinegar	Ethanoic acid (commonly called acetic acid)
3. Tamarind	Tartaric acid
4. Sour milk	Lactic acid

2. Conduction of electricity and dissociation of acids

Such solutions are commonly used in car and inverter batteries. When acids are dissolved in water, they produce ions which help in conducting the electricity. This process is known as dissociation. More specifically, acids produce hydrogen ions (H⁺) which are responsible for all their characteristic properties. These ions do not exist as H⁺ in the solution but combine with water molecules as shown below:

 $H^+ + H_2O \longrightarrow H_3O^+$

On the basis of the extent of dissociation occurring in aqueous solutions, their acids classified are as strong and weak acids:

Dr Salam Hussein Alwar

Strong and Weak acids

Acids are classified as strong and weak acids and their characteristics are as follow:

Strong Acids		Weak Acids		
The acids which completely dissociate		The acids which dissociate partially in		
in water are	called strong acids.	water are called weak acids. All organic		
Nitric acid c	ompletely dissociates in	acids like acetic acid and some		
water		inorganic acids are weak acids. Since		
HNO ₃ (aq) -	→ H ⁺ (aq) + NO ₃ ⁻ (aq)	their dissociation is only partial, it is		
There are on	ly seven strong acids	depicted by double half arrows.		
1. HCl	Hydrochloric Acid	<u>HF(aq)</u> $H^+(aq) + F^-(aq)$		
2. HBr	Hydrobromic Acid	The double arrows indicate here that		
3. HI	Hydroiodic Acid	(i) the aqueous solution of hydrofluoric		
4. HClO ₄	Perchloric Acid	acid not only contains H ⁺ (aq) and F ⁻		
5. HClO ₃	Chloric Acid	(aq) ions but also the undissociated acid		
6. H ₂ SO ₄	Sulphuric Acid	HF (aq).		
7. HNO3	Nitric Acid	(ii) there is an equilibrium between the		
		undissociated acid HF (aq) and the ions		
		furnished by it, H ⁺ (aq) and F ⁻ (aq)		
		Examples:		
		(a) CH ₃ <u>COOH</u> Ethanoic (acetic) acid		
		(b) HF Hydrofluoric acid		
		(c) HCN Hydrocynic acid		
		(a) C ₆ H ₅ COOH Benzoic acid		

3. The reaction of acids with metals

For example, the reaction between zinc and dil. sulphuric acid can be written as: $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2\uparrow$ Zinc dil. <u>sulphuric</u> acid zinc sulphate hydrogen gas

4. The reaction of acids with metal carbonates and hydrogen carbonates

Na ₂ CO ₃ (s) +	$2HCl(aq) \rightarrow$	2NaCl(aq) +	$H_2O(l)$	+ CO ₂ (g)↑
sodium carbonate	dil. hydrochloric acid	sodium chloride	water	carbon dioxide

5. The reaction of acids with metal oxides

$$CuO(\underline{s}) + 2HCl(aq) \longrightarrow CuCl_2(aq) + H_2O$$

6. Reaction of acids with bases

Neutralization. It results in the formation of salt and water. The reaction between hydrochloric acid and sodium hydroxide forms sodium chloride and water.

 $HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O$

8. Corrosive Nature

The ability of acids to attack various substances like metals, metal oxides and hydroxides is referred to as their corrosive nature. (It may be noted here that the term '**corrosion**' is used with reference to metals and refers to various deterioration processes (oxidation) they undergo due to their exposure to the environment). Acids are corrosive in nature as they can attack a variety of substances.

 $SiO_2 + 4HF \rightarrow SiF_4 + 2H_2O$ Silica hydrofluoric silicon water (In <u>glass)</u> acid tetra fluoride

Dr. Salam Hussein Alwan

Properties of Bases

The following are the characteristic properties of bases:

1. Taste and touch

Bases have a bitter taste and their solutions are soapy to touch.

2.Action on Indicators

The colours shown by three commonly used indicators in presence of bases are listed below for easy recall.

Indicator	Colour in basic medium		
1. Litmus	Blue		
2. Phenolphthalein	Pink		
3. Methyl orange	Yellow		

Table 3 Colours of some common indicators in basic solution

3. Conduction of electricity and dissociation of bases

Aqueous solutions (solution in water) of bases conduct electricity which is due to the formation of ions. Like acids, bases also dissociate on dissolving in water. Bases

produce hydroxyl ions (OH⁻) which are responsible for their characteristic properties. The bases which are soluble in water and give OH⁻ ions in their aqueous solution are called **alkalies**. All alkalies are bases but all bases are not alkalies. On the basis of the extent of dissociation occurring in their solution, bases are classified as strong and weak bases.

Strong and Weak Bases

Bases are classified as strong and weak bases and their characteristics are as follow:

Strong Acids	Weak Acids		
These bases are completely dissociated	Weak bases do not furnish OH ⁻ ions by		
in water to form the cation and	dissociation. They react with water to		
hydroxide ion (OH-). For example,	furnish OH ⁻ ions.		
potassium hydroxide dissociates as	$NH_3(g) + H_2O$ NH_4OH		
$KOH(aq) \rightarrow K^{+}(aq) + OH^{-}(aq)$	$NH_4OH(aq)$ $NH_4^+(aq) + OH^-(aq)$		
There are only eight strong bases. These	or		
are the hydroxides of the elements of	$NH_3(g) + H_2O$ $NH^{4+}(aq) + OH^{-}(aq)$		
Groups 1 and 2 of the periodic table.	The reaction resulting in the formation		
1. LiOH Lithium hydroxide	of OH- ions does not go to completion		
2. NaOH Sodium hydroxide	and the solution contains a relatively		
3. KOH Potassium hydroxide	low concentration of OH- ions. The two		
4. <u>RbOH</u> Rubidium hydroxide	half arrows are used in the equation to		
5. CsOH Caesium hydroxide	indicate that equilibrium is reached		
6. Ca (OH) ₂ Calcium hydroxide	before the reaction is completed.		
7. Sr $(OH)_2$ Strontium hydroxide	Examples of weak bases (i) NH4OH, (ii)		
8. Ba (OH) ₂ Barium hydroxide	$\underline{Cu(OH)}_2$ (iv) Cr(OH) ₃ (v) Zn(OH) ₂ etc.		

Dr. Salam Hussein Alwan

4. Reaction of bases with metals

For example, sodium hydroxide reacts with zinc as shown below:

 $Zn(s) + 2NaOH(aq) \longrightarrow Na_2ZnO_2(aq) + H_2(g) \uparrow$

5. Reaction of Bases with non-metal oxides

Bases react with oxides of non-metals like CO_2 , SO_2 , SO_3 , P_2O_5 etc. to form salt and water. For example,

 $\underline{Ca(OH)}_2(aq) + CO_2(g) \longrightarrow CaCO_3(s) + H_2O$

6. Reaction of bases with acids

Such reactions are called neutralization reactions and result in the formation of salt and water. The following are some more examples of neutralization reactions:

 $HCl(aq) + KOH(aq) \rightarrow KCl(aq) + H_2O$

Self-dissociation of water

Water plays an important role in acid-base chemistry. We have seen that it helps in the dissociation of acids and bases resulting in the formation of $H^+(aq)$ and $OH^-(aq)$ ions respectively. Water itself undergoes a dissociation process which is called 'self-dissociation of water'.

$$H_2O = H^+(aq) + OH^-(aq)$$

The dissociation of water is extremely small and only about two out of every billion (10⁹) water molecules are dissociated at 25°C. As a result, the concentrations of H⁺(aq) and OH⁻(aq) ions formed are also extremely low. At 25°C (298K):

 $[H^+] = [OH^-] = 1.0 \times 10^{-7} \text{ mol } L^{-1}$

It must be noted here that in pure water and in all aqueous neutral solutions,

 $[H^+] = [OH^-]$

Also, in pure water as well as in all aqueous solutions at a given temperature, product of concentrations of H⁺(aq) and OH⁻(aq) always remains constant. This product is called 'ionic product of water' and is given the symbol K_w . It is also called ionic product constant of water. Thus

 $K_w = [\text{H}^+] [\text{OH}^-]$ At 25°C (298 K), in pure water, *Kw* can be calculated as: $K_w = (1.0 \times 10^{-7}) \times (1.0 \times 10^{-7})$ $= 1.0 \times 10^{-14}$

Table 3 Concentration of H⁺(aq) ions in different types of aqueous solutions

Nature of solution	Concentration of H ⁺ ions at 25°C (298 K)
Neutral Acidic Basic	$\begin{array}{l} [\mathrm{H^{+}}] = 1.0 \times 10^{-7} \ \mathrm{mol} \ \mathrm{L^{-1}} \\ [\mathrm{H^{+}}] > 1.0 \times 10^{-7} \ \mathrm{mol} \ \mathrm{L^{-1}} \\ [\mathrm{H^{+}}] < 1.0 \times 10^{-7} \ \mathrm{mol} \ \mathrm{L^{-1}} \end{array}$

pH and its importance

When dealing with a range of concentrations (such as these of $H^{+}(aq)$ ions) that span many powers of ten, it is convenient to represent them on a more compressed logarithmic scale. We use the pH scale for denoting the concentration of hydrogen ions. pH notation was devised by the Danish biochemist Soren Sorensen in 1909. The term pH means "power of hydrogen". The pH is the logarithm of the reciprocal of the hydrogen ion concentration. It is written as:

$$pH = \log \frac{1}{[H]}$$

Alternately, the pH is the negative logarithm of the hydrogen ion concentration i.e.

 $pH = -log [H^+]$

Because of the negative sign in the expression, if [H⁺] increases, pH would decrease and if it decreases, pH would increase.

In pure water at 25° (298 K)

 $[H^+] = 1.0 \times 10^{-7} \text{ mol } L^{-1}$ $\log[H^+] = \log(10^{-7}) = -7$ and pH = -log[H^+] = -(-7)pH = 7Since in pure water at 25°C (298 K)

 $[OH^{-}] = 1.0 \times 10^{-7} \text{ mol } L^{-1}$ Also, pOH = 7

> Since, $K_w = 1.0 \times 10^{-14}$ pK_w = 14

The relationship between pK_w, pH and pOH is

 $\mathbf{pK}_{w} = \mathbf{pH} + \mathbf{pOH}$

at 25°C (298 K)

14 = pH + pOH

pH Scale

The pH scale ranges from 0 to 14 on this scale. pH 7 is considered neutral, below 7 acidic and above 7 basic. The scale is shown below in Fig. 5.

Table 5: pH of some common acids and bases

Common Acids	pH	Common Bases	pН
HCl (4%)	0	Blood plasma	7.4
Stomach acid	1	Egg white	8
Lemon juice	2	Sea water	8
Vinegar	3	Baking soda	9
Oranges	3.5	Antacids	10
Soda, grapes	4	Ammonia water	11
Sour milk	4.5	Lime water	12
Fresh milk	5	Drain cleaner	13
Human saliva	6-8	Caustic soda 4% (NaOH)	14
Pure water	7		

Calculations based on the pH concept

A. Strong Acids and Bases

When the solution contains just one substance which is strong acid or base, the equation must be written in the ionic style and calculate the pH directly from the Hydrogen ion concentration (Hydronium ion).

Example: Find the pH of a 0.03 M solution of hydrochloric acid, HCl.

Solution: there is one substance in this solution which is HCl strong acid, this acid will completely dissociate in water to form H^+ and Cl^- .

HCl → H⁺(aq) + Cl⁻(aq) [H⁺] = 0.03 M $\mathbf{pH} = -\log[\mathbf{H}^+] = 1.5$

Dr. Salam Hussein Alwan

Example: Find the pH of a 0.03 M solution of NaOH.

Solution: there is one substance in this solution which is NaOH strong Base, this the base will completely dissociation in water to form OH⁻ and Na⁺

NaOH \rightarrow Na⁺(aq) + OH⁻(aq) [OH⁻] = 0.03 M pOH = -log[OH⁻] = 1.5 pH = 14 - pOH = 12.5

A. Weak Acids and Bases

Weak Acids and Acid Ionization Constants

Weak acids do not fully dissociate in water. The extent to which a weak acid ionizes in water depends on:

1. The concentration of the acid

2. The equilibrium constant for the ionization reaction, K_a

We will only consider monoprotic acids in this section:

HA(aq) H⁺(aq) + A⁻(aq)
$$K_a = \frac{[H^+][A^-]}{[HA]}$$

 K_a is called the acid ionization constant.

$$pK_a = -log K_a$$

We can calculate pH from Ka, or Ka from pH.

Example: Calculate the pH of a 0.50 M HF solution at 25°C? $K_a = 7.1 \times 10^{-4}$

	HF 🛁	H ⁺ +	F ⁻
Initial	0.50	0*	0
Change	-x	+x	+x
Equilibrium	0.50 - x	X	х

we have neglected the auto-ionization of water because it will have a negligible effect (x will be much larger than 10^{-7})

At equilibrium we have

 $K_a = x^2 / 0.50 - x$

This is a quadratic equation in x. The "simple" math is to put

(0.50 - x) = 0.50

Then we have

 $K_a = x^2/0.50$

 $x^2 = (0.50) \times (7.1 \text{ x } 10^{-4})$

x = 0.019

The pH is then = $-\log(0.019) = 1.72$

Using pH to Determine K_a

We can use the pH of a weak acid to determine the equilibrium concentrations, which gives us the equilibrium constant.

Example: Calculate the K_a of a weak acid if a 0.015 M solution of the acid has a pH of 5.03 at 25°C. **Solution**:

 $pH = 5.03 = -log[H^+]$ $[H^+] = 10^{-5.03} = 9.33 \times 10^{-6} M$

	HA ≓	H ⁺ +	A ⁻
Initial	0.015	0	0
Change	- 9.33 x 10 ⁻⁶	+ 9.33 x 10 ⁻⁶	+ 9.33 x 10 ⁻⁶
Equilibrium	0.01499	9.33 x 10 ⁻⁶	9.33 x 10 ⁻⁶

 $K_a = (9.33 \times 10^{-6})^2 / 0.01499 = 5.8 \times 10^{-9}$

Calculating pH from K_b

We proceed as for weak acid, using pH + pOH = 14

Example: Calculate the pH at 25°C of a 0.16 M solution of a weak base with a K_b of 2.9 x 10⁻¹¹.

Solution: Since K_b is so small we can make the math simple.

	B	(+ H ₂ O)	\rightleftharpoons	HB⁺	+	OH⁻
Initial	0.16		0			0
Change	-X		+χ			+χ
Equilibrium	0.16	- X	Х			Х

 $K_b = [HB^+][OH^-]/[B]$ = x²/0.16 - x = x²/0.16 Which gives x² = (0.16) × K_b x = 2.15 x 10⁻⁶ pOH = 5.67 Therefore pH = 14 - 5.67 = 8.33

Using pH to Determine K_b

This is very similar the weak acid calculation.

Example: Determine the K_b of a weak base if a 0.35 M solution of

the base has a pH of 11.84 at 25°C.

Solution:

 $pOH = 14 - pH = 2.16 \Rightarrow [OH^{-}] = 10^{-2.16} = 6.92 \text{ x } 10^{-3}$

	B (+ H ₂ O)	→ HB ⁺ +	OH⁻
Initial	0.35	0	0
Change	- 6.92 x 10 ⁻³	+ 6.92 x 10 ⁻³	+ 6.92 x 10 ⁻³
Equilibrium	0.3431	6.92 x 10 ⁻³	6.92 x 10 ^{−3}

 $K_b = (6.92 \text{ x } 10^{-3})^2 / 0.3431$

 $= 1.4 \text{ x } 10^{-4}$

Salts

A salt is an ionic compound consisting of a cation except a hydrogen ion and an anion except a hydroxide ion

- A salt is the product of acid-base neutralization
- In general acid + base \rightarrow salt + water

 $NaOH + H_2CO_3 \leftrightarrow NaHCO_3 + H_2O$

Characteristics of salt:

- * Most of the salts are crystalline solid.
- * Salts may be transparent or opaque.
- * Most of the salts are soluble in water.
- * Solution of the salts conducts electricity in their molten state also.
- * The salt may be salty, sour, sweet, bitter and umami (savoury).
- * Neutral salts are odourless.
- * Salts can be colourless or coloured.

Types of salts

(i) Neutral Salt: Salts produced because of reaction between a strong acid and strong base are neutral in nature. The pH value of such salts is equal to 7, neutral. Example: Sodium chloride, Sodium sulphate. Postassium chloride, etc.

Sodium chloride (NaCl): It is formed after the reaction between hydrochloric acid (a strong acid) and sodium hydroxide (a strong base)

 $NaOH + HCl \rightarrow NaCl + H_2O$

(ii) Acidic Salts: Salts which are formed after the reaction between a strong acid and weak base are called Acidic salts. The pH value of acidic salt is lower than 7. For example, Ammonium sulphate, Ammonium chloride, etc. Ammonium chloride is formed after reaction between hydrochloric acid (a strong acid) and ammonium hydroxide (a weak base).

```
NH_4OH + HCl \rightarrow NH_4Cl + H_2O
```

(iii) Basic Salts: Salts that are formed after the reaction between a weak acid and strong base are called Basic Salts. For example; Sodium carbonate, Sodium acetate,

etc.

Sodium carbonate is formed after the reaction between sodium hydroxide (a strong base) and carbonic acid (a weak acid).

```
H_2CO_3 + 2NaOH \rightarrow Na_2CO_3 + H_2O
```